Sách Giải Bài Tập và SGK
Mục lục
Câu 12: Cho đường tròn tâm O bán kính 5cm, dây AB bằng 8cm. a) Tính khoảng cách từ tâm O đến dây AB
Câu 12:
Cho đường tròn tâm O bán kính 5cm, dây AB bằng 8cm.
a) Tính khoảng cách từ tâm O đến dây AB.
b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD đi qua I và vuông góc với AB. Chứng minh rằng CD = AB.
Lời giải:
a) Kẻ OJ vuông góc với AB tại J.
Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.
Ta được \(AJ=\frac{1}{2} AB=4 cm\)
Áp dụng định lí Pitago trong tam giác vuông OAJ có:
\(O J^{2}=O A^{2}-A J^{2}=5^{2}-4^{2}=9\) (OA = R = 5cm)
⇒ OJ = 3cm (1)
Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.
b) Kẻ OM vuông góc với CD tại M.
Tứ giác OJIM có: \(\hat{I}=\widehat{J}=\widehat{M}=90^{\circ}\) nên là hình chữ nhật
Ta có IJ = AJ – AI = 4 – 1 = 3cm
⇒ OM = IJ = 3cm (Tính chất hình chữ nhật) (2)
Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)