Sách Giải Bài Tập và SGK

Câu 22: Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi (α) là mặt phẳng đi qua A sao cho góc giữa OA và (α) bằng 30 độ

Câu 22:

Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi (α) là mặt phẳng đi qua A sao cho góc giữa OA và (α) bằng .

a) Tính diện tích của thiết diện tạo bởi (α) và hình cầu.

b) Đường thẳng đi qua A vuông góc với mặt phẳng (α) cắt mặt cầu tại B. Tính độ dài đoạn AB.

Lời giải:

a) Gọi H là hình chiếu vuông góc của tâm O trên mặt phẳng (α). Theo giả thiết ta có ∠OAH = .

Do đó:

Vậy diện tích của thiết diện tạo bởi (α) và hình cầu là:

b) Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có OI ⊥ AB. Vì AB // OH nên AIOH là hình chữ nhật.

Do đó

Vậy AB = 2AI = r

Chú ý: Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc ∠OAB = nên OAB là tam giác đều và suy ra AB = OA = OB = r.