Sách Giải Bài Tập và SGK

Câu 18: Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a√2. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh.

Câu 18:

Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a√2. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh.

a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC.

b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD.

Lời giải:

a) Giả sử mặt cầu đi qua đỉnh A của hình chóp và tiếp xúc với cạnh SB tại , tiếp xúc với cạnh SC tại . Khi đó mặt cầu cắt cạnh AB, AC lần lượt tại các điểm , . Mặt phẳng (SAB) cắt mặt cầu đó theo giao tuyến là một đường tròn. Đường tròn này tiếp xúc với SB tại B1 và đi qua A và .

Do đó, ta có: = BA.

trong đó

Do đó

Vậy

Điều đó chứng tỏ mặt cầu nói trên đi qua trung điểm của đoạn AB. Lí luận tương tự ta chứng minh được mặt cầu đó đi qua trung điểm của AC.

b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D, ta có:

Do đó