Sách Giải Bài Tập và SGK

Câu 17: Cho mặt cầu tâm O bán kính r. Gọi (α) là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và ...

Câu 17:

Cho mặt cầu tâm O bán kính r. Gọi (α) là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng (α) cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C)

a) Chứng minh các tổng + + có giá trị không đổi.

b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?

c) Tìm tập hợp các điểm H, hình chiếu của B trên CD khi CD chuyển động trên đường tròn (C).

Lời giải:

a) Tam giác ADC vuông tại A nên = (1)

Tam giác ABC vuông tại A nên = + (2)

Từ (1) và (2) ta suy ra + = + (3)

Ta lại có:

= = + (4)

= 4(), = (5)

Từ (4) và (5) ta có:

+ = + = 4() + = (6)

Từ (3) và (6) ta có: + = + (không đổi)

b) Diện tích tam giác BCD bằng:

Diện tích này lớn nhất khi AI // CD.

c) Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng (α).