Sách Giải Bài Tập và SGK
Mục lục
Câu 2: Tìm các khoảng đồng biến, nghịch biến của các hàm số: a) y = (3-2x)/((x+7)
Câu 2:
Tìm các khoảng đồng biến, nghịch biến của các hàm số:
Lời giải:
a) TXĐ: R \ {-7}
y' < 0 trên các khoảng (-∞; -7), (-7; +∞) nên hàm số nghịch biến trên các khoảng đó
b) TXĐ: R \ {5}
y' < 0 trên khoảng (5; +∞) nên y nghịch biến trên khoảng (5; +∞)
y' > 0 trên khoảng (-∞; 5) nên y đồng biến trên khoảng (-∞; 5)
c) TXĐ: R \ {-3; 3}
y' < 0 trên các khoảng (-∞; - 3), (-3; 3), (3; +∞) nên hàm số đã cho nghịch biến trên các khoảng đó.
d) TXĐ: R \ {0}
y' = 0 ⇔
Bảng biến thiên:
Vậy hàm số đã cho đồng biến trên các khoảng (-∞; -2), (2; +∞) và nghịch biến trên các khoảng (-2; 0), (0; 2)
e) TXĐ: R \ {-1}
y' = 0 ⇔
Vậy hàm số đã cho đồng biến trên các khoảng (−∞; −1 − √6), (−1 + √6; +∞) và nghịch biến trên các khoảng (−1 − √6; −1),(−1; −1 + √6)
g) TXĐ: R \ {2}
(do − 4x +
− 4x + 7 có Δ' = - 3 < 0)
Vậy hàm số đã cho đồng biến trên các khoảng (−∞;2),(2;+∞)