Sách Giải Bài Tập và SGK

Câu 2: a) y = -x^4 + 8x^2 - 1; b) y = x^4 -2x^2 +2

Câu 2:

Lời giải:

a) Hàm số y =

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = - + 16x = -4x( - 4)

y' = 0 ⇔ -4x( - 4) = 0 ⇔ x = 0 ; x = ±2

Trên khoảng (-∞; -2) và (0; 2), y’ > 0 nên hàm số đồng biến.

Trên các khoảng (-2; 0) và (2; +∞), y’ < 0 nên hàm số nghịch biến.

+ Cực trị :

Hàm số đạt cực đại tại x = 2 và x = -2 ; yCĐ = 15

Hàm số đạt cực tiểu tại x = 0 ; yCT = -1.

+ Giới hạn:

+ Bảng biến thiên:

3) Đồ thị:

+ Hàm số đã cho là hàm số chẵn, vì:

y(-x) = - + 8 - 1 = - + - 1 = y(x)

⇒ Đồ thị nhận Oy làm trục đối xứng.

+ Giao với Oy tại điểm (0; -1) (vì y(0) = -1).

+ Đồ thị hàm số đi qua (-3; -10) và (3; 10).

b) Hàm số

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = - 4x = 4x( - 1)

y' = 0 ⇔ 4x( - 1) = 0 ⇔ x = 0 ; x = ±1.

+ Giới hạn:

+ Bảng biến thiên:

Kết luận :

Hàm số đồng biến trên khoảng (-1; 0) và (1; +∞).

Hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1).

Đồ thị hàm số có hai điểm cực tiểu là: (-1; 1) và (1; 1).

Đồ thị hàm số có điểm cực đại là: (0; 2)

3) Đồ thị:

+ Hàm số chẵn nên đồ thị hàm số nhận trục Oy là trục đối xứng.

+ Đồ thị hàm số cắt trục tung tại (0; 2).

+ Đồ thị hàm số đi qua (-1; 1) và (1; 1).

+ Đồ thị hàm số:

c) Hàm số

1) Tập xác định: D = R

2) Sự biến thiên:

+ y' = + 2x = 2x( + 1)

   y' = 0 ⇔ 2x( + 1) = 0 ⇔ x = 0

+ Giới hạn:

+ Bảng biến thiên:

Kết luận: Hàm số đồng biến trên khoảng (0; +∞).

Hàm số nghịch biến trên các khoảng (-∞; 0).

Đồ thị hàm số có điểm cực đại là: (0; -3/2).

3) Đồ thị:

+ Hàm số chẵn nên nhận trục Oy là trục đối xứng.

+ Hàm số cắt trục hoành tại điểm (-1; 0) và (1; 0).

+ Hàm số cắt trục tung tại điểm

d) Hàm số

1) Tập xác định: D = R

2) Sự biến thiên:

+ Chiều biến thiên:

y' = -4x - = -4x(1 + )

y' = 0 ⇔ -4x(1 + ) = 0 ⇔ x = 0

+ Giới hạn:

+ Bảng biến thiên:

Kết luận: Hàm số đồng biến trên khoảng (-∞; 0).

Hàm số nghịch biến trên các khoảng (0; +∞).

Đồ thị hàm số có điểm cực đại là: (0; 3).

3) Đồ thị:

+ Hàm số là hàm số chẵn nên nhận trục Oy là trục đối xứng.

+ Hàm số cắt trục Ox tại (-1; 0) và (1; 0).

+ Hàm số cắt trục Oy tại (0; 3).

Kiến thức áp dụng

Các bước khảo sát hàm số và vẽ đồ thị:

1, Tìm tập xác định.

2, Khảo sát sự biến thiên

+ Tính y’

⇒ Chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tính các giới hạn

Từ đó suy ra Bảng biến thiên.

3, Vẽ đồ thị hàm số.