Sách Giải Bài Tập và SGK
Mục lục
Câu 9: Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.
Câu 9:
Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.
Lời giải:
• Phép tịnh tiến là phép dời hình.
Nếu phép tính tiến v→ biến hai điểm M, N lần lượt thành M’, N’ thì
Suy ra M’N’ = MN hay phép tịnh tiến là một phép dời hình.
• Phép đối xứng trục là phép dời hình.
Cách 1. Gọi Đ là phép đối xứng qua đường thẳng d
Giả sử I là trung điểm MN’, J là trung điểm của NM’
Suy ra I, J ∈ d
Ta có:
Từ (1), (2), (3) suy ra =
=>MN=M'N'
=> Vậy phép đối xứng trục là phép dời hình.
Cách 2. Giả sử phép đối xứng qua đường thẳng d biến M thành M’, N thành N’
Gọi (P) là mặt phẳng chứa NM’ và (P) // MM’
,
' lần lượt là hình chiếu của M, M’ trên (P); O = ∩(P). Ta có d ⊥ (P) nên O đồng thời là trung điểm của
' và NN'. Vậy phép đối xứng tâm O biến
thành
', N thành N’ nên
' nên
N=
'N'.
Mặt khác N,
'N' lần lượt là hình chiếu của MN, M’N’ trên (P), MM’ // (P) nên MN = M’N’.
Vậy phép đối xứng qua đường thẳng là phép dời hình.
• Phép đối xứng tâm là phép dời hình.
Nếu phép đối xứng tâm O biến hai điểm M, N lần lượt thành M’, N’ thì
Vậy phép đối xứng tâm là phép dời hình.