Sách Giải Bài Tập và SGK

Câu 3: Cho hai đường tròn (O, r) và (O’, r’) cắt nhau tại hai điểm A, B và lần lượt nằm trên hai mặt phẳng phân biệt (P) và (P’).

Câu 3:

Cho hai đường tròn (O, r) và (O’, r’) cắt nhau tại hai điểm A, B và lần lượt nằm trên hai mặt phẳng phân biệt (P) và (P’).

a) Chứng minh rằng có mặt cầu (S) đi qua đường tròn đó

b) Tính bán kính của R của mặt cầu (S) khi r = 5, r’ = √10, AB = 6, OO’ = √21

Lời giải:

a) Gọi M là trung điểm của AB thì OM ⊥AB,O' M⊥AB. Do (P) và (P’) phân biệt nên ba điểm O, M, O’ không thẳng hàng.

Từ đó AB ⊥ mặt phẳng (OMO’).

Gọi Δ và Δ' lần lượt là trục của đường tròn (O, r) và (O’, r’) thì Δ và Δ' cùng vuông góc với AB.

Từ đó suy ra Δ và Δ' cùng nằm trong mặt phẳng (OMO’). Δvà Δ' cắt nhau tại điểm I. Khi đấy mặt cầu (C ) có tâm I và bán kính R = IB là mặt cầu cần tìm.

b) Ta có:

Tương tự: O’M = 1

Xét ΔOMO' ta có:

Như vậy =+=25+12=37 tức R = √37

Vậy R=√37