Sách Giải Bài Tập và SGK

Câu 38: Chứng minh rằng nếu |z|=|w|=1 thì số (z+w)/(1+zw) là số thực

Câu 38:

Chứng minh rằng nếu là số thực (giả sử 1+zw ≠ 0)

Lời giải:

Giả sử z=a+bi,w=a'+b'i với +=+=1 và 1+zw ≠ 0

Vì |z| = 1 nên z.z−=1

Khi đó, ta có:

Xét phần ảo ở trên tử số ta có: (b+b' )(1+aa'-bb' )-(a+a' )(a' b+ab' )

=b+baa'-b'+b'+b' aa'--aa' b- b'- b-a'ab'

=b+b'-b' (+ )-b(+ )=b+b'-b'-b=0