Sách Giải Bài Tập và SGK

Bài tập trắc nghiệm dạng 11

Câu 1.

Hai chất điểm dao động điều hòa với chu kỳ T, lệch pha nhau ∆φ = π/3 với biên độ lần lượt là A và 2A, trên hai trục tọa độ song song cùng chiều, gốc tọa độ nằm trên đường vuông góc chung. Khoảng thời gian nhỏ nhất giữa hai lần chúng gặp nhau là:

A. T    B. T/2

C. T/3    D. T/4

Lời giải

Do hai dao động cùng chu kì, nên tần số góc bằng nhau.

Giả sử tại thời điểm hai chất điểm gặp nhau, khi đó vuông góc với trục Ox.

Mặt khác độ lệch pha của hai chất điểm là ∆φ = π/3 nên từ hình vẽ ta có = = A.

Sau nửa chu kì MN lại vuông góc với Ox, tức là hai chất điểm lại gặp nhau

Vậy khoảng thời gian nhỏ nhất giữa hai lần chúng gặp nhau là: ∆t = T/2 .

Chọn đáp án B


Câu 2.

Hai chất điểm dao động điều hòa cùng tần số trên hai đường thẳng song song kề nhau cách nhau 5 cm và song song với Ox có đồ thị li độ như hình vẽ. Vị trí cân bằng của hai chất điểm đều ở trên một đường thẳng qua gốc tọa độ và vuông góc với Ox. Biết

-

= 1,08 s. Kể từ lúc t = 0, hai chất điểm cách nhau 5√3 cm lần thứ 2016 là

A. 362,73 s.    B. 362,85 s.

C. 362,67 s.    D. 362,70 s.

Lời giải

Từ đồ thị ta tìm được phương trình dao động của 2 vật:

Khi đồ thị cắt nhau, tức là 2 vật cùng nằm trên một đường thẳng vuông góc với Ox, khi đó = 0.

Gọi d là khoảng cách giữa 2 vật: = ( + ;

Bấm máy = =

Trong một chu kỳ có 4 thời điểm

Từ vòng tròn biểu diễn hiệu ta nhận thấy lần thứ 2016 kể từ t = 0 tương ứng với khoảng thời gian là:

Chọn đáp án A

Câu 3.

Hai chất điểm M và N dao động điều hòa cùng tần số dọc theo hai đường thẳng song song kề nhau và song song với trục tọa độ Ox. Vị trí cân bằng của M và N đều ở trên một đường thẳng qua gốc tọa độ và vuông góc với Ox. Phương trình dao động của M và N lần lượt là (cm) và (cm). Kể từ t = 0, thời điểm M và N có vị trí ngang nhau lần thứ 3 là :

A. T    B. 9T/8

C. T/2    D. 5T/8

Lời giải

Cách 1:

Khoảng cách giữa M và N :

x = = Acos(Δt + φ) Với:

Khi M, N có VT ngang nhau:

M và N có vị trí ngang nhau lần thứ 3 khi k = 2

Cách 2: Tại thời điểm t = 0, hai vật không gặp nhau.

Tại thời điểm gặp nhau thì MN vuông góc với Ox. Sử dụng định lý Hàm số cosin trong tam giác MON ta tính được cạnh MN

Sử dụng định lý hàm số sin (hoặc dùng định lý hàm số côsin) ta tìm được góc α

Như vậy ta tìm được pha dao động của N tại thời điểm gặp nhau:

ϕ2(t) = (π/2 – π/6) + kπ = π/3 + kπ (vì vật 2 nhanh pha hơn vật 1) với k = 0, 1, 2, 3…

Ta có: ωt + φ = π/3 + kπ ↔ (s) với k = 0, 1, 2, 3…

Lần thứ 3 gặp nhau ứng với k = 2 →

Câu 4.

Hai chất điểm dao động điều hòa trên cùng một trục tọa độ Ox theo các phương trình lần lượt là = 4cos4πt cm và cm. Thời điểm lần đầu tiên hai chất điểm gặp nhau là

A. 1/16    B. 1/4s

C. 1/12 s    D. 5/24s

Lời giải

Biểu diễn các dao động , bằng các véctơ tương ứng.

Chú ý:

Ban đầu hai véctơ này lần lượt trùng với trục ox và oy và chúng cùng quay theo chiều dương của đường tròn lượng giác.

Hai dao động này vuông pha nhau và cùng tần số góc nên góc hợp bởi hai véctơ này không đổi theo thời gian.

Khi hai chất điểm gặp nhau (chúng có cùng li độ) thì đoạn thẳng nối hai đầu mút của hai véctơ (cạnh huyền của tam giác vuông) phải vuông góc với trục Ox.

Ta có:

Do đó góc quét φ của hai véctơ là: .

Thời điểm lần đầu tiên hai chất điểm gặp nhau là:

Chọn D.

Câu 5.

Cho hai vật dao động điều hoà trên cùng một trục toạ độ Ox, có cùng vị trí cân bằng là gốc O và có cùng biên độ và với chu kì lần lượt là = 1 s và = 2 s. Tại thời điểm ban đầu, hai vật đều ở miền có gia tốc âm, cùng đi qua vị trí có động năng gấp 3 lần thế năng và cùng đi theo chiều âm của trục Ox. Thời điểm gần nhất ngay sau đó mà hai vật lại gặp nhau là

A. 2/9s    B. 4/9s

C. 2/3s    D. 1/3s

Lời giải

Tại thời điểm ban đầu, hai vật đều ở miền có gia tốc âm nên x > 0, cùng đi qua vị trí có động năng gấp 3 lần thế năng x = A/2 và cùng đi theo chiều âm của trục Ox.

Phương trình dao động của 2 vật lần lượt là:

Khi hai vật gặp nhau thì:

Khi k = 1 thì t = 2 và t = 4/9s. Vậy tmin = 4/9s.

Chọn đáp án B


Câu 6.

Hai chất điểm M và N dao động điều hòa cùng tần số ω = 4π rad/s dọc theo hai đường thẳng song song kề nhau và song song với trục tọa độ Ox. Vị trí cân bằng của M và của N đều ở trên một đường thẳng qua gốc tọa độ và vuông góc với Ox. Trong quá trình dao động, khoảng cách lớn nhất giữa M và N theo phương Ox là 10√3 cm. Tại thời điểm

hai vật cách nhau 15cm, hỏi sau khoảng thời gian ngắn nhất là bao nhiêu kể từ thời điểm khoảng cách giữa chúng bằng 15cm.

Lời giải

Cách 1: Theo đề ta có:

Giải sử chọn φ = 0, nghĩa là lúc t = 0:

tại :

Từ hình vẽ: Dễ thấy 2 thời điểm gần nhất là 2 lần :

Từ M1 đến M2:

Chọn đáp án A

Cách 2: Trên hình vẽ đường tròn lượng giác:

Giả sử tại M, N, P và Q là các lần mà hai vật cách nhau 15cm.

Khoảng thời gian ngắn nhất là kể từ thời điểm khoảng cách giữa chúng bằng 15cm

Hay về thời gian là .v

Chọn đáp án A

Câu 7.

Hai điểm sáng 1 và 2 cùng dao động điều hòa trên trục Ox với phương trình dao động lần lượt : = cos(ω + φ) cm, = cos( ω + φ) cm (với < , ω < ω và 0 < φ < π/2). Tại thời điểm ban đầu t = 0 khoảng cách giữa hai điểm sáng là a√3. Tại thời điểm t = Δt hai điểm sáng cách nhau là 2a, đồng thời chúng vuông pha. Đến thời điểm t = 2Δt thì điểm sáng 1 trở lại vị trí đầu tiên và khi đó hai điểm sáng cách nhau 3a√3. Tỉ số bằng:

A. 4,0    B. 3,5

C. 3,0    D. 2,5

Lời giải

+ Tại t = 0 (2 dao động biểu diễn bằng 2 vectơ quay màu đỏ).

Khoảng cách trên Ox là cosφ – cosφ = a√3 (1)

+ Sau Δt (2 dao động biểu diễn bằng 2 vectơ quay màu xanh):

Vật 1 quay góc Δφ, vật 2 quay góc Δφ.

Vì vật 1, sau thời gian 2Δt quay góc 2Δφ thì nó trở lại vị trí cũ x0 lần đầu nên sau Δt (ứng với góc quay Δφ) nó phải ở - như hình vẽ.

Ở thời điểm ∆t, vật 2 chuyển động chậm hơn và vuông pha với vật 1 nên vật 2 ở vị trí như hình vẽ.

Khoảng cách 2 vật lúc này là: d = = 2a (2)

+ Sau 2Δt, vật 1 quay thêm góc Δφ nữa, vật 2 quay góc Δφ nữa. Chúng biểu diễn bằng các vecto màu nâu.

Khoảng cách của chúng: d’ = cosφ + cosφ = 3a√3 (3)

+ Giải hệ (1) (2) và (3) φ = π/6.

Theo hình vẽ: Δφ = π - φ = ,

Δφ = π/2 - φ = π/3. Vậy

Chọn đáp án D

Câu 8.

Hai vật dao động điều hoà cùng pha ban đầu, cùng phương và cùng biên độ với các tần số góc lần lượt là: ω = π/6 (rad/s); ω = π/3 (rad/s). Chọn gốc thời gian lúc hai vật đi qua vị trí cân bằng theo chiều dương. Thời gian ngắn nhất mà hai vật gặp nhau là:

A. 1s    B. 4s.

C. 2s.    D. 8s

Lời giải

Phương trình dao động của hai vât:

= cos(ω – π/2); = cos(ω – π/2).

Hai vật gặp nhau lần đầu khi pha của chúng đối nhau: (ω - π/2) = - (ω - π/2)

+ ω ).t = π → t = π/(ω + ω ) = 2s.

Chọn đáp án C

Câu 9.

Hai chất điểm dao động điều hoà trên hai trục tọa độ Ox và Oy vuông góc với nhau (O là vị trí cần bằng của cả hai chất điểm). Biết phương trình dao động của hai chất điểm là: x = 2cos(5πt +π/2) cm và y = 4cos(5πt – π/6) cm. Khi chất điểm thứ nhất có li độ x = cm và đang đi theo chiều âm thì khoảng cách giữa hai chất điểm là

Lời giải

Ta có: t = 0:

x = 0, < 0 chất điểm qua VTCB theo chiều âm.

y = 2√3,

> 0, chất điểm y đi từ 2√3 ra biên.


* Khi chất điểm x đi từ VTCB đến vị trí x = -√3 cm hết thời gian T/6

* Trong thời gian T/6 đó, chất điểm y đi từ y = 2√3, ra biên dương rồi về lại đúng y = 2√3,

* Vị trí của 2 vật như hình vẽ.

Khoảng cách giữa 2 vật là


Chọn D

Câu 10.

Hai chất điểm P và Q dao động điều hòa trên cùng một trục Ox (trên hai đường thẳng song song kề sát nhau) với phương trình lần lượt là

= 4cos(4πt + /3) (cm) và

= 4 cos(4πt + π/12) (cm). Coi quá trình dao động hai chất điểm không va chạm vào nhau. Hãy xác định trong quá trình dao động khoảng cách lớn nhất và nhỏ nhất giữa hai chất điểm là bao nhiêu?

A.

= 0(cm);

= 8(cm)

B.

= 2(cm);

= 8(cm)

C.

= 2(cm);

= 4(cm)

D.

= 0(cm);

= 4(cm)

Lời giải

Để xác định khoảng cách ta viết phương trình hiệu của

:

d = x =

= Acos(ωt + φ)

Trong đó:

=

+

cos(φ1 - φ2) =

⇒ A = 4cm

= = 0(cm); = = 4(cm)

Chọn D.